区域分割

区域分割是讲图像按照相似性准则分成不同的区域,主要包括区域增长,区域分裂合并和分水岭等几种类型。

区域增长

区域生长是一种串行区域分割的图像分割方法。区域生长是指从某个像素出发,按照一定的准则,逐步加入邻近像素,当满足一定的条件时,区域生长终止。区域生长的好坏决定于1.初始点(种子点)的选取。2.生长准则。3.终止条件。区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。

原理

区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。

区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。相似性准则可以是灰度级、彩色、纹理、梯度等特性。选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。大部分区域生长准则使用图像的局部性质。生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。

示例

图1是区域增长的示例。

  1. 图1(a)给出需要分割的图像,设已知两个种子像素(标为深浅不同的灰色方块),现要进行区域生长。设这里采用的判定准则是:如果考虑的像素与种子像素灰度值差的绝对值小于某个门限T,则将该像素包括进种子像素所在的区域。
  2. 图1(b)给出了T=3时的区域生长结果,整幅图被较好地分成2个区域;
  3. 图1(c)给出了T=1时的区域生长结果,有些像素无法判定;图1(c)给出了T=6时的区域生长的结果,整幅图都被分在一个区域中了。

区域增长

实现

区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域(seed point),再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多的区域

区域生长实现的步骤如下:

  1. 对图像顺序扫描!找到第1个还没有归属的像素, 设该像素为(x0, y0);
  2. 以(x0, y0)为中心, 考虑(x0, y0)的4邻域像素(x, y)如果(x0, y0)满足生长准则, 将(x, y)与(x0, y0)合并(在同一区域内), 同时将(x, y)压入堆栈;
  3. 从堆栈中取出一个像素, 把它当作(x0, y0)返回到步骤2;
  4. 当堆栈为空时!返回到步骤1;
  5. 重复步骤1 - 4直到图像中的每个点都有归属时。生长结束。

区域分裂合并

原理

区域分裂合并算法的基本思想是先确定一个分裂合并的准则,即区域特征一致性的测度,当图像中某个区域的特征不一致时就将该区域分裂成4个相等的子区域,当相邻的子区域满足一致性特征时则将它们合成一个大区域,直至所有区域不再满足分裂合并的条件为止。当分裂到不能再分的情况时,分裂结束,然后它将查找相邻区域有没有相似的特征,如果有就将相似区域进行合并,最后达到分割的作用。在一定程度上区域生长和区域分裂合并算法有异曲同工之妙,互相促进相辅相成的,区域分裂到极致就是分割成单一像素点,然后按照一定的测量准则进行合并,在一定程度上可以认为是单一像素点的区域生长方法。区域生长比区域分裂合并的方法节省了分裂的过程,而区域分裂合并的方法可以在较大的一个相似区域基础上再进行相似合并,而区域生长只能从单一像素点出发进行生长(合并)。

算法

反复进行拆分和聚合以满足限制条件的算法。

令R表示整幅图像区域并选择一个谓词P。对R进行分割的一种方法是反复将分割得到的结果图像再次分为四个区域,直到对任何区域Ri,有P(Ri)=TRUE。这里是从整幅图像开始。如果P(R)=FALSE,就将图像分割为4个区域。对任何区域如果P的值是FALSE.就将这4个区域的每个区域再次分别分为4个区域,如此不断继续下去。这种特殊的分割技术用所谓的四叉树形式表示最为方便(就是说,每个非叶子节点正好有4个子树),这正如图10.42中说明的树那样。注意,树的根对应于整幅图像,每个节点对应于划分的子部分。此时,只有R4进行了进一步的再细分。

如果只使用拆分,最后的分区可能会包含具有相同性质的相邻区域。这种缺陷可以通过进行拆分的同时也允许进行区域聚合来得到矫正。就是说,只有在P(Rj∪Rk)=TRUE时,两个相邻的区域Rj和Rk才能聚合。 前面的讨论可以总结为如下过程。在反复操作的每一步,我们需要做:

  1. 对于任何区域Ri,如果P(Ri)=FALSE,就将每个区域都拆分为4个相连的象限区域。
  2. 将P(Rj∪Rk)=TRUE的任意两个相邻区域Rj和Rk进行聚合。
  3. 当再无法进行聚合或拆分时操作停止。

可以对前面讲述的基本思想进行几种变化。例如,一种可能的变化是开始时将图像拆分为一组图象块。然后对每个块进一步进行上述拆分,但聚合操作开始时受只能将4个块并为一组的限制。这4个块是四叉树表示法中节点的后代且都满足谓词P。当不能再进行此类聚合时,这个过程终止于满足步骤2的最后的区域聚合。在这种情况下,聚合的区域可能会大小不同。这种方法的主要优点是对于拆分和聚合都使用同样的四叉树,直到聚合的最后一步。

分水岭法

原理

分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。

算法

分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。

分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即

g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始图像,grad{.}表示梯度运算。

分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。 为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。

为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即

g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示阈值。

程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。

参考文章:

results matching ""

    No results matching ""